Lung Cancer Screening

nodules, cancer, mortality ... and beyond

Heidi Roberts, MD, FRCP(C)

Professor of Radiology

Lung Cancer Screening

nodules, cancer, mortality ... and beyond

beforeand after November 2010

Screening – before Nov 2010

impact of lung cancer

- screening CTs for lung cancer detection
- lung cancer stage at detection

mortality ?

FREQUENT

LETHAL

- lung cancer is the leading cause of cancer death worldwide
- lung cancer kills more people annually than breast, prostate, colon, kidney and liver cancer, and melanoma combined
- more than 50 percent of new lung cancer cases will be diagnosed at a very late stage

overall 5-year survival ~ 15%

Lung Cancer

15% survival

Lung Cancer

80% survival

Screening – before Nov 2010

impact of lung cancer

- screening CTs for lung cancer detection
- lung cancer stage at detection

mortality ?

Lung Cancer Screening - Detection

high prevalence and incidence of early stage lung cancer detected at LDCT

[Bellomi et al. Cancer Imaging 2009, Pastorino Brit J Cancer 2010]

Lung cancer prevalence [%]

	0	0.5	1	1.5	2	2.5
Henschke et al, 1999						
Sone et al, 2001						
Nawa et al, 2002						
Sobue et al, 2002						
Diederich et al, 2004						
Swensen et al, 2003						
Pastorino et al, 2003						
Bastarrika et al, 2005						
Roberts et al, 2005						
Chong et al, 2005						
Novello et al, 2005						
MacRedmond et al, 2006)6						
I-ELCAP 2006						
Veronesi et al, 2008						
Menezes et al. 2009						

early stage lung cancers [%]

screen-detected lung cancers I-ELCAP, PMH, Toronto (~2.3% detection rate)

Screening – before Nov 2010

impact of lung cancer

- screening CTs for lung cancer detection
- lung cancer stage at detection

mortality ?

Single-arm trials: survival

 International Early Lung Cancer Action Program (I-ELCAP)

I-ELCAP

- 27,456
- non-randomized
- 10-year-survival
- up to 92%*

Henschke et al, New Eng J Med 2006

survival vs. mortality

10-year survival up to 92%

[I-ELCAP New Eng J Med 2006]

- longer survival ‡ reduced mortality
- survival biased by
 - lead time bias
 - length time bias
 - overdiagnosis

lead time bias

lead time bias

overdiagnosis bias

randomized trials: mortality

Study	Country	Design	Year started	Subjects
LSS	USA	CT vs CXR	2000	3318
DANTE	Italy	CT vs obs	2001	2472
NLST	USA	CT vs CXR	2002	53000
NELSON	NL-B	CT vs obs	2003	15822
DLCST	DK	CT vs obs	2004	4104
ITALUNG	Italy	CT vs obs	2004	3206
MILD	Italy	CT vs obs	2005	4479
LUSI	Germany	CT vs obs	2007	4000

> 90,000

Nov 4th 2010

"Lung Cancer Screening Using LDCT Reduces Deaths"

> thestar.com 🔇

- on November 4, 2010
- the NLST reported *initial* trial results, showing 20 percent fewer lung cancer deaths among trial participants screened with low-dose helical CT (also known as spiral CT) compared to those who got screened with chest X-rays

National Lung Screening Trial

- paper published N Eng J Med 2011
- 20% mortality benefit
- will change the way how lung cancer screening will be recommended
- impact on health care polices expected

Lung Cancer Screening - Sep 2011

- not paid for by OHIP
- not standard of care anywhere in the western world
- research only
 - international (USA, Europe, Japan)
 - national (Pan-Canadian, 7 sites) enrollment closed in Dec 2010

Lung Cancer Screening - Sep 2011

not research
 not clinical

no options for

study participants people at risk collaborating/referring physicians

disguised scre

COPD, hemoptysis" ast-enhanced CT zed follow up of nodules

Screening – beyond mortality

- nodules and false positives
- management of cancers (overdiagnosis)
- radiation exposure
- selection of individuals at risk
- the solution

Lung Cancer Screening

nodules, nodules, nodules cancer

false positives

nodules in the lung that turn out NOT to be cancer

Lung Cancer Screening - False positives

- cumulative probability of a false-positive result on low-dose CT
 - after 1 screening 21%
 - after 2 screenings 33%
- 61% of those participations with false-positive results on low-dose CT scan had to undergo additional imaging
- another 6.6% underwent invasive procedures

[Croswell et al, Ann Int Med 2010, 152, 505-12

"negative" annual repeat
 without nodules

- "negative" annual repeat without nodules
- "negative" with (small) nodules
 annual repeat

- "negative" annual repeat without nodules
- "negative" with (small) nodules
 annual repeat
- "positive" large nodules

→ 1 – 3 month follow up CT other interventions

- 5.1% 51.4% of patients have nodules (Bepler et al, Cancer Control, 2003)
- 80-99% (!) of those are benign
- how deal with all of the nodules?
 - what is a nodule?
 - follow up of nodules

- what is NOT a nodule?

- what is NOT a nodule?

Lung Cancer Screening – nodules – what is NOT a GG (ground glass) nodule?

- "negative" annual repeat
 no nodules
- "negative" annual repeat
 small nodules
- "positive" large nodules
 1-3 month follow up CT other interventions

positive screening CT

	definition	%
ELCAP Lancet 1999	any size	23.3
Italian SS Lancet 2003	6 mm	29
LSS (NCI) Chest 2004	4 mm	20.5
Mayo Radiology 2005	any	51
Toronto (n=1000) Can Ass Rad J 2007	5 mm	25.7
Toronto (n=3352) Lung Cancer 2009	5 mm	18
NLST N Eng J Med 2011	4 mm	27.3

how deal with all of the nodules?

- follow up of nodules

- follow up of nodules
- I-ELCAP flowchart

- follow up of nodules
- Fleischner criteria MacMahon Radiology 2005

Nodule Size (mm)*	Low-Risk Patient [†]	High-Risk Patient [‡]
≤4	No follow-up needed [§]	Follow-up CT at 12 mo; if unchanged, no further follow-up
>4–6	Follow-up CT at 12 mo; if unchanged, no further follow-up	Initial follow-up CT at 6–12 mo then at 18–24 mo if no change
>6–8	Initial follow-up CT at 6–12 mo then at 18–24 mo if no change	Initial follow-up CT at 3–6 mo then at 9–12 and 24 mo if no change
>8	Follow-up CT at around 3, 9, and 24 mo, dynamic contrast-enhanced CT, PET, and/or biopsy	Same as for low-risk patient

- follow up of nodules
- Fleischner criteria

Nodule Size (mm)*	Low-Risk Patient [†]
≤4	No follow-up needed§
>4–6	Follow-up CT at 12 mo; if unchanged, no further follow-up
>6–8	Initial follow-up CT at 6–12 mo then

- follow up of nodules
- Fleischner criteria

Hign-kisk Patient*

	Follow-up CT at 12 mo; if
	unchanged, no further follow-up
	Initial follow-up Cf at 6–12 mo then
v-up [∥]	at 18–24 mo f no change
b then	Initial follow-up CT at 3–6 mo then
	at 9–12 and 24 mo if no change
nd 24	Same as for low-risk patient

- how deal with all of the nodules?
 - follow up of nodules
 - protocol
 - size + growth

nodule follow up

solid lesions < ~ 5 mm

- "negative", no follow up

nodule follow up

- solid lesions < ~ 5 mm
 no follow-up
- solid lesions 5 10 mm
 - surveillance of growth
 - doubling time 30 360 = malignant

3 months

doubling time 72 days

combined small cell-large cell neuroendocrine carcinoma

3 months

mucinous adenocarcinoma

nodule follow up

- solid lesions < ~ 5 mm
 - no follow up
- solid lesions 5 10 mm
 - surveillance of growth
- non-solid lesions
 - risk of malignancy relates to size and growth of solid component

3 months

same size, higher density

adenocarcinoma

3 months

measurement?

adenocarcinoma

false positives

- NELSON study
- protocol keyed to
 - size of solid nodules at first observation
 - 3D volume doubling times in follow-up scans
 - location and morphology
- rate of false-positive diagnoses 7.9%
- relatively low rate of false-positive screen results compared with previous studies on lung cancer screening

Screening – positive baseline

Menezes, Roberts Lung Cancer 2009

false positives

- 4782 participants
- simple algorithm based on size and growth
 - 130 biopsies (2.7%) recommended
 - 20 biopsies (0.4%) for benign lesions

nodule follow up

- solid lesions < ~ 5 mm
 no follow-up
- solid lesions 5 10 (15?) mm
 surveillance of growth
- solid lesions > 10 (15?) mm
 immediate bx?

example: screen-detected nodule

baseline

3 months follow up

bx planning CT

June 23rd

Screening – beyond mortality

- nodules and false positives
- management of cancers (overdiagnosis)
- radiation exposure
- selection of individuals at risk
- the solution

overdiagnosis bias

overdiagnosis bias

- diagnosis of "disease" that will never cause symptoms or death during a patient's lifetime
- diagnosis is correct, but irrelevant
- treatment causes harm
- early, unexpected death of other cause
 co-morbidities in smokers
- indolent disease

overdiagnosis bias?

untreated T1 lung cancers

 – 13% 8-year survival compared to 71% following surgery [Henschke Lung Cancer 2003]

 median overall survival 9 months compared to 69 months following surgery [Raz Cheset 2007]

unselected, all histologies

overdiagnosis bias

- indolent disease
- small subgroup: bronchioalveolar ca
 - malignant cells
 - non-invasive growth
 - CT: GGO, slow or no growth
 - lepidic growth growth along preexisting alveolar structure

overdiagnosis bias ?

– non-solid (ground glass)

- biopsy shows malignant cells
- not palpable @ surgery
- non-invasive on pathology

lepidic growth

overdiagnosis bias ?

overdiagnosis bias

- indolent disease
- small subgroup
 - non-invasive growth
 - GGO
 - lepidic growth, growth along preexisting alveolar structures
 - slow growing

overdiagnosis bias ?

3 months

no growth

biopsy: malignant cells

surgical resection

1.1 cm bronchioloalveolar carcinoma, no invasion

July 2007

March 2008

growth rate > 380 days

July 2008

Slow growing BAC

overdiagnosis bias

- indolent disease
- small subgroup
 - non-invasive growth
 - GGO
 - lepidic growth, growth along preexisting alveolar structures
 - slow growing
 - cured with resection
 - often multiple

multifocal adeno ca / BAC

multifocal adeno ca / BAC

Multifocal BAC

2005

Multifocal BAC

2010

overdiagnosis bias

• indolent disease

selection

- imaging (CT, PET)
- growth analysis
- biomarker (genetic markers)

multifocal BAC

multiple GGOs, most suspicious RUL was biopsied: adeno-ca no treatment, had semiannual follow up CTs

Screening – beyond mortality

- nodules and false positives
- management of cancers (overdiagnosis)
- radiation exposure
- selection of individuals at risk
- the solution

Lung Cancer Screening – Method

- low-dose
- 40-60 mA
- 120 kV
- 1 mm 1.25 mm

Lung Cancer Screening – Method

Lung Cancer Screening – Method

Lung Cancer Screening

Radiation risk

Low Dose Chest CT Values from NLST

- F. Larke et al at RSNA 2008 (SSG18-09)
- data from 96 CT scanners at NLST sites, 2003-2007
- mean CTDI_{vol}: 3.4 mGy, S.D.: 1.7 mGy
- assumed typical scan length of 35 cm
- mean Effective Dose: 2.0 mSv, S.D.: 1.0 mSv
 - Min/Max: 0.5 7.0 mSv
- for comparison:
 - standard chest CT:
 - screening chest radiograph:
 - transatlantic flight:
 - mammography:

8 - 9 mSv 0.08 – 0.12 mSv 0.25 mSv 0.7 mSv

Screening – how long?

- detectable risk factor or disease marker
 - smoking and ex-smoking population

Screening – how long?

risk to die from lung cancer 1 55 years – 75/80 years

Screening – how often?

baseline 50 - 55 years annual / biennial until 75 - 80 years

2 years

baseline

annual (no show)

May 07

Sep 07

Oct 09

200

Lung Cancer Screening

baseline 50 - 55 years annual / biennial until 75 - 80 years

proposal

- baseline + 1 annual
- if no change biennial

Screening – beyond mortality

- nodules and false positives
- management of cancers (overdiagnosis)
- radiation exposure
- selection of individuals at risk
- the solution

Lung Cancer Screening – Whom?

NOT everybody

limit advertisements and promotion

"Demand a CAT Scan" advertising campaign

Lacy Atkins / The Chronicle

Lung Cancer Screening – Whom?

risk factors: age (>50 – 55 years)

smoking (10-30 pack-years)

 large smoking population
 large ex-smoking population
 lung cancer risk decreases only very slowly (as opposed to cardiovascular risk)

Canadian Tobacco Use Monitoring Survey 2009

- "During the past 11 years 1999-2009, CTUMS has reported a decline in the overall current smoking rate among Canadians aged 15 years and older from 25% in 1999 to 18% in 2009"
- "The population aged 15 years and older increased by about 3.1 million Canadians, the number of current smokers has decreased by 1.3 million, former smokers increased by 1.3 million and never smokers increased by 3.4 million."
- ever smokers: 44%

people at risk

Ontario: population > 13 million
 - 6.5 M male, 6.7 M female

people at risk

- Ontario: population > 13 million
- 18% current smokers
- 44% ever smokers

- ~ 2.3 million
- ~ 5.7 million

OMA April 2010

- TORONTO, April 20 /CNW/
- "Ontario's doctors released their latest report on the status of tobacco in the province and most surprisingly, it revealed that there are more smokers today than in the mid-1960s.
 There are some 2.3 million smokers in Ontario right now compared to 2.1 million people back then."

Ontario - demographics

Age Groups	Total	Male	Female
0–4 years	671,250	343,340	327,910
5–9 years	772,650	396,385	376,265
10–14 years	788,845	404,970	383,880
15–24 years	1,487,835	754,565	733,270
25–34 years	1,558,495	760,695	797,800
35–44 years	1,959,520	963,840	995,680
45–54 years	1,635,280	801,540	833,735
55–64 years	1,064,000	520,570	543,430
65–74 years	818,170	383,625	434,540
75–84 years	503,930	202,270	301,665
85 years and over	150,075	45,260	104,810
Total	11,410,045	5,577,055	5,832,99

people at risk

• Ontario: population > 13 million

- Ontario: population
 55-75 years old
- 18% *current* smokers
- 44% ever smokers

360,000 880,000

~ 2 million

people at risk

- Ontario: population ~ 2 million
 55-75 years old
- 18% current smokers
- 44% ever smokers

360,000 880,000

- screening compliance 25% to be screened:
- current smokers
- ever smokers

90,000 220,000

people at risk - cancers

- 18% *current* smokers 360,000
- 44% *ever* smokers 880,000

cancer prevalence: 1.5%

Lung Cancer Screening – Whom?

better selection of "at risk" population

individual profile

 multifactorial risk assessment smoking, family history, spirometry, BMI, education Pan-Canadian Lung Cancer Screening Study

- sputum analysis
- blood analysis (biomarkers)

Screening – beyond mortality

- nodules and false positives
- management of cancers (overdiagnosis)
- radiation exposure
- selection of individuals at risk
- the solution

Lung Cancer Screening – network

family practice / respirology, etc.

risk assessment smoking counselling

medical imaging

low-dose nodule detection nodule follow up biopsies

"Screening is a process, not a procedure"

thoracic surgery oncology

immediate surgery minimal invasive (VATS) resection local treatments

Screening – mortality and beyond

- impact of lung cancer
- screening CTs for lung cancer *detection*
- lung cancer stage at detection
- mortality

- nodules and false positives
- overdiagnosis
- radiation exposure
- selection of individuals at risk
- screening network

